Subject areas:
Research
The Holmes Lab brings techniques from machine learning, statistical linguistics, phylogenetics, and web development to bear on the interpretation and analysis of genomic data. Examples include the application of context-free grammars to understanding DNA and RNA structure; the use of phylogenetic methods in genome annotation, and to detect recombination breakpoints; the development of machine learning algorithms for bioinformatics models; the reconstruction of insertion, deletion and transposition events in genome evolutionary histories; statistical algorithms for metagenomics species distribution analysis; and dynamic-HTML web applications for collaborative genomic data analysis.